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Abstract

We have studied the metabolic gene-function network in yeast and digital organisms evolved in the

artificial life platform Avida. The gene-function network is a bipartite network in which a link exists

between a gene and a function (pathway) if that function depends on that gene, and can also be viewed

as a decomposition of the more traditional functional gene networks, where two genes are linked if they

share any function. We show that the gene-function network exhibits two distinct degree distributions:

the gene degree distribution is scale-free while the pathway distribution is exponential. This is true for

both yeast and digital organisms which suggests that this is a general property of evolving systems, and

we propose that the scale-free gene degree distribution is due to pathway duplication, i.e. the development

of a new pathway where the original function is still retained. Pathway duplication would serve as

preferential attachment for the genes, and the experiments with Avida revealed precisely this, genes

involved in many pathways are more likely to increase their connectivity. Measuring the overlap between

different pathways, in terms of the genes which constitute them, showed that pathway duplication also

is a likely mechanism in yeast evolution. This anaylsis sheds new light on the evolution of genes and

functionality, and suggests that function duplication could be an important mechanism in evolution.

keywords: digital evolution/gene-function relationship/metabolic network

Introduction

The use of networks in cell biology has been a crucial tool in understanding the complex interactions in

living matter (Albert, 2005; Barabasi and Oltvai, 2004; Koonin et al., 2006), and since the advent of high-

throughput techniques such as genome-sequencing, microarrays and proteomics, this approach has become

necessary in order to organise the vast amount of data being produced. The picture that has emerged

reveals highly interconnected structures on several organisational levels within the cell, and that these are

in turn connected to produce the complex behaviour of living cells (Jordan et al., 2000; Kitano, 2004, 2002;

Hartwell et al., 1999).

New techniques have in the last decade made it possible to map out the large-scale structure of protein
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interaction networks in a large number of organisms including viruses (McCraith et al., 2000), bacteria

(Rain et al., 2001) and eukaryotes (Gavin et al., 2002; Li et al., 2004; Giot et al., 2003). Although they

suffer from being incomplete and containing false positives they still reveal a structure common across

all organisms that have been analysed. The most striking feature is that protein interaction networks are

very heterogeneous and exhibit a scale-free degree distribution (Jeong et al., 2001; Wagner, 2001). This

means that the probability of finding a node that is connected to k other nodes (i.e. has degree k) scales as

P(k) ∝ k−γ. This is in contrast with the classical model of complex networks introduced by Erdős and Rényi

(Bollobas, 1985; Erdős and Rényi, 1960), which exhibits a Poisson degree distribution with an exponential

decay P(k) ∝ exp(−βk) for k larger than the average degree. In terms of structure the scale-free distribution

implies that the networks are characterised by a small number of highly connected hub proteins and a large

number of proteins with few interaction partners. Futher, they also display the so-called “small-world

effect” which means that they are highly clustered and exhibit a small average path-length (Wagner, 2001).

These observed features are believed to stem from the fact that the protein networks grow through gene

duplication and divergence (Ohno, 1970; Wapinski et al., 2007; Prince and Pickett, 2002).

On a different level of cellular organisation, transcriptional networks have been constructed for E. Coli

(Shen-Orr et al., 2002) and S. Cerevisiae (Guelzim et al., 2002). These networks also exhibit a scale-

free out-degree distribution (number of outgoing links), while the in-degree (number of incoming links)

follows an exponential decay, reflecting the asymetric nature of gene regulation. As with protein networks

the growth of the transcriptional network is driven by gene duplication, where regulatory interactions can

either be conserved or lost during divergence (Teichmann and Babu, 2004).

A more general type of network that has been considered are functional gene networks (Lee et al.,

2004; Franke et al., 2006; Troyanskaya et al., 2003), in which two genes are connected if they are func-

tionally linked. In order to construct functional networks data collected from various sources such as DNA

microarray experiments, protein interactions and comparative genomics is integrated to generate a single

network using statistical methods. These networks cover a large number of different types of interactions

such as metabolic coupling, genetic regulation and protein interaction, and give a comprehensive overview

of the functional association between different genes.
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An example of such a network is YeastNet (Lee et al., 2007), which describes the functional association

between genes in S. Cerevisiae. This network integrates 10 different data sources and is probabilistic, in

the sense that each link in the network is associated with the probability of describing an actual functional

relationship. Due to its integrative nature it has an extensive coverage incorporating 102,803 linkages

among 5,483 yeast proteins (95 % of the validated proteome). A similar approach has also been used to

construct a functional gene network for C. Elegans (Lee et al., 2008). In this network node degree correlates

with essentiality, and the network could also be used to make tissue-specific predictions identifying genes

associated with loss-of-function phenotypes. Similar to the other networks discussed this functional gene

networks exhibit a scale-free degree distribution, although with an exponential cut-off for large k. In an

effort to assign functional attributes to unannotated proteins in yeast a gene functional network was also

utilised (Chen and Xu, 2004). The prediction of biological function was done both locally, using “guilt by

association”, and on a global scale in the network by using a Boltzmann machine. With this approach they

were able to assign function to 1802 out of 2280 unannotated proteins in yeast.

Functional gene networks have provided useful information about the functional association of genes,

but little attention has been paid to the actual structure of these networks. Although these networks are

probabilistic in nature, in some instances more reliable information is available, and therefore allows for

a more in depth study of their structure. One example is the metabolism of S. Cerevisiae in which the

underlying gene-function relationship has to a large extent been established. Using these data we have

performed a detailed analysis of the large-scale structure of gene-function dependence from a network

perspective. In order to test the generality of the results we have also analysed networks obtained from

the artificial life platform Avida (Adami, 1998). In these in silico experiments we have the capability to

monitor the evolution of gene-function dependency, and from this draw conclusions about the dynamics of

yeast evolution.
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Results

Gene-function relationship in the yeast metabolism

The Yeast Biochemical Pathways dataset was downloaded from the Saccharomyces Genome Database

(http://www.yeastgenome.org/, 09/10/07, (Christie et al., 2004)). In this dataset, computationally predicted

metabolic pathways were manually reviewed and curated to ensure accuracy. Known pathways that were

missed by the prediction were manually added to improve the coverage. This dataset incorporates 463

genes involved in 122 pathways (i.e. functions). From this information we constructed a Functional Ge-

nomic Array (FGA) (Lenski et al., 2003), which is a useful way of representing information from such a

database. It is an N×M binary matrix, where N is the number of genes and M is the number of pathways

in the dataset. The entry at position (i, j) is 1 if gene number i is involved in pathway number j and 0

otherwise. The FGA constructed from the data can be seen in Fig. 1a. It gives a graphical representation of

the gene-function dependency and reveals that the relationship is highly heterogeneous, where many genes

are involved in a small number of pathways while only a small fraction take part in many pathways. The

converse seems also to be true, most pathways involve only a few genes while a minority depend on a large

number of genes.

This is even more evident if we interpret the FGA as an adjacency matrix and draw the corresponding

graph (shown partially in Fig. 1b). This is a bipartite graph as the edges connect members of two disjoint

sets (genes and pathways), and can be viewed as a decomposition of the functional gene network because

the adjacency matrix of the corresponding functional gene (i.e. gene-gene) network can be recovered by

multiplying the FGA with its transpose. The bipartite network separates the contribution of genes and

functions in the connectivity of the functional gene network, and clearly contains more information than

its one mode projection (Newman et al., 2001) (Fig. 2). It should be noted that the gene-function network

is similar to actor collaboration graphs where one set of nodes correspond to the actors and the other to

the movies they act in (Ramasco et al., 2004), and also to graphs representing the genotype-phenotype

map, although those graphs make use of higher order phenotypic traits rather than functions within the

cell (Hansen, 2006). In this context we can identify some genes having pleoitropic effects and these genes
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probably have a significant impact on the overall metabolism. But instead of focusing our attention on

these highly connected genes we proceeded to analyse the overall structure of the bipartite graph.

From this graph we can extract the degree distributions for the genes and the pathways, i.e. calculating

the probability pg(k) of finding a gene which is involved in k pathways, and the probability p f (k) of finding

a pathway (function) which depends on k genes. If we assume, as a comparative null-model, that the links

between genes and pathways in this graph are random and occur with a given probability p between every

gene and pathway, then the degree distributions pg(k) and p f (k) would follow binomial distributions with

the average degree of the genes being pN f and correspondingly pNg for the pathways, where N f ,g is the

number of genes/pathways in the network. From this it follows that both degree distributions would decay

exponentially for k larger than the average degree (see Materials and Methods). This will serve as a null-

model with which we can compare the actual degree distributions obtained from yeast and the digital

organisms.

In order to avoid some of the inherent noisiness of the data we analysed cumulative distributions

P(x > k) instead of frequency functions (Tanaka et al., 2005). The results are shown in Fig. 1c and d, and

both distributions are, as expected, decreasing functions of the degree, but more specifically they decay

in two distinct ways. The pathway degree distribution shows a linear decrease in a semi-log plot (cor-

relation coefficient ρ = −0.991), implying that it follows an exponential distribution p f (k) ∼ exp(−βk)

with β = 0.22. The gene degree distribution on the other hand exhibits a linear decay in a log-log plot

(ρ = −0.9997), which implies that it follows a scale-free or power-law distribution pg(k) ∼ k−γ with

γ = 3.27. The functional gene network obtained from the one mode projection has an average clustering

coefficient of 〈C〉 = 0.96 (see Materials and Methods), which suggests a high degree of potential modu-

larity (Ravasz et al., 2002) (see also Fig. S1). In order to ensure that the observed structures were not an

artifact of the Saccharomyces Genome Database we performed an identical analysis on yeast data from the

KEGG-database. The KEGG Pathway dataset was downloaded from the Kyoto Encyclopedia of Genes and

Genomes database (http://www.genome.jp/kegg/, 12/10/07), and only metabolic pathways were included

for this study. In this dataset, all pathways were computationally predicted. It covers 775 genes involved in

83 pathways. From this dataset the gene/pathway degree distributions were extracted in precisely the same
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way as for the SGD dataset. In similarity with that data the gene degree distribution (Fig. 3a) is scale-free

pg(k) ∼ k−γ (with γ = 3.30, ρ = −0.987), and the pathway degree distribution (Fig. 3b) is exponential

p f (k) ∼ exp(−βk) (with β = 0.07, ρ = −0.993). The average clustering coefficient for the correspond-

ing functional gene network was 〈C〉 = 0.88, which again suggests a high degree of potential modularity.

These results show that the gene-function network deviates from the proposed null-model, which exhibits

exponential degree distributions for both genes and pathways, and this has some interesting implications

for the growth dynamics and evolution of the yeast gene-function network.

From the work of Barabási and Albert (Barabasi and Albert, 1999) it is known that using the two

mechanisms; growth and preferential attachment, a random scale-free network can be formed. If only new

edges and no new nodes are added to the network the degree distribution soon reaches a state where all

nodes are connected. On the other hand if new nodes are added, but connect to existing nodes without

any preference then the network exhibits a Poisson degree distribution. The yeast metabolic network is

the product of an evolutionary process, which implies that new genes and pathways have been added to

the network through some growth process. This suggests that there are two different types of growth

dynamics occurring within the gene-function network. On one hand the genes seem to acquire connections

to pathways through a mechanism which preferentially attaches genes with a high degree, while on the

other hand the pathways seem to acquire links to genes essentially independent of their own degree.

Experiments in digital evolution

In order to test this hypothesis we have performed experiments using the Artificial Life platform Avida

(Adami, 1998, 2006). Avida is a platform for studying the evolution of digital organisms in a virtual

environment, and has for instance been used to investigate the evolutionary origin of complex features

(Lenski et al., 2003), adaptive radiation (Chow et al., 2004) and genetic interactions (Lenski et al., 1999).

The organisms in Avida reside on a square lattice, each lattice point containing a CPU that executes the

genome of the organism. The genome consists of a circular sequence of machine-code instructions, such

as add and if-n-equ, which modify the state of the CPU in a predefined manner (see Fig. 4 which is a

common illustration (Lenski et al., 2003; Adami, 2006) and also Table S1). These instructions allow for
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self-replication, but can also be used to perform basic computational functions for which the organisms

are rewarded by obtaining more CPU-time (see Table S2). The increase in CPU-time can be viewed as an

increase in energy production as it allows for a faster execution of the genome, and therefore the computa-

tion of these functions corresponds to a digital metabolism. The instructions and functions constitute two

distinct operational levels within the organism, where the combined action of certain instructions give rise

to a given function. The instructions of the organism can therefore be thought of as genes, which when

executed/expressed perform a given cellular function, whereas the computational functions can be likened

to metabolic pathways where the metabolites pass through a number of discrete steps and the end product

is a chemical compound beneficial for the cell. The copying of instructions is subject to mutations (i.e.

changes to the genotype), which may alter the rate of reproduction and the metabolism of the organism.

Most mutations to an organism are neutral or deleterious and only a small fraction increases the reproduc-

tive success of the organism (Lenski et al., 1999). The success of a given genotype depends on what other

genotypes are present in the environment and this means that the fitness in Avida is implicitly defined and

not a predefined function of the genotype.

Each run was started with an ancestral genotype that had only the capability to self-replicate. After

approximately 7500 ancestral generations the dominant (i.e. most abundant) genotype was extracted and

its lineage was tracked back all the way to the ancestral genotype. All the genotypes in the lineage were

also saved as they provide crucial information about the evolutionary trajectory of the system. Firstly we

calculated the FGA for the dominant genotype. This was done by changing each instruction of the genome

of this genotype one at a time into a null instruction. Each modified version of the genotype was then

executed in a test-CPU and the functions it could perform were recorded. In real cells this would correspond

to knocking out one gene at a time and recording the phenotypic effects this has. This procedure gives us

information about which genes each function depends on, and from this the FGA can be created in exactly

the same way as for the yeast data. From the FGA the cumulative degree distributions were extracted for

both the instructions and the functions. The results were averaged over 120 runs with different random

seeds and the outcome can be seen in Fig. 5.

In similarity with the gene degree distribution from the yeast data we observe a scale-free distribution
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for the genes in Avida (γ = 2.0 with ρ =−0.996), although in this case with a cut-off for high k. This cut-

off (which in a non-cumulative plot corresponds to a flattening out of the curve) is due to a few essential

instructions, which when knocked-out kill the organism. This means that the execution of all functions will

depend on these crucial instructions, as we consider a non-viable organism incapable of performing any

functions. The instructions involved in execution flow (e.g. jumps and loops in the genome) indeed have

an above average connectivity (data not shown), and these contribute to the large fraction of high-degree

instruction nodes in the network.

The cumulative degree distribution for the functions in Avida exhibits an exponential decay (β = 0.15

with ρ = −0.993) for k larger than the average degree 〈k〉 ≈ 26. The reason for the behaviour for small k

is that the rewarded functions require a minimal number of instructions (i.e. genes) to be performed, and

consequently functions with a low degree are absent. The average clustering coefficient of the projected

networks was 〈C〉 = 0.91± 0.03, similar to the value obtained from the yeast metabolism. Again we

observe that the degree distributions of the network deviate from the null-model, which suggests that the

evolutionary dynamics of the network is governed by a different mechanism.

In order to further investigate the evolutionary dynamics in Avida we made use of the fact that we

can access the entire lineage of the dominant genotypes. We calculated the FGA of every organism in the

lineages of the dominant genotypes and aligned them to form 3-dimensional arrays (one for each lineage),

where position (i, j,k) is 1 if instruction number i was involved in function j in ancestor k in the lineage

and 0 otherwise, where k is the phylogenetic depth from the initial ancestor (Lenski et al., 2003) (see

Supplementary Video). In order to visualise these arrays we can project them down by summing them along

the function or instruction dimension. These reduced (2-dimensional) arrays show the time development of

the instruction and function degree (Fig. 6). From the example shown we can observe that instructions that

became involved in functions at an early stage are the ones that in the end have the highest degree (Fig. 6a).

The function degree distribution seems to behave in a qualitatively different way, where the degree seems

to fluctuate and no increase is discernible (Fig. 6b). The time-dependent FGA also allows us to track the

evolution of the average clustering coefficient (of the corresponding gene-gene network) in each lineage

(Fig. 6c and Fig. S2), and reveals that apart from an initial increase the cluster coefficient is essentially
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constant during evolution (see Materials and Methods). This is in agreement with a study of Ravasz et. al

(Ravasz et al., 2002), which showed that the clustering coefficient of metabolic networks is independent of

network size.

In order to quantify the changes in function/gene degree we estimated the rate at which an instruction or

function increases its degree depending on its current degree. In other words we measured the preference

function by which instructions and functions receive new links (see Materials and Methods). The results

show that for the genes the preference function might be approximated by an increasing linear function of

the degree (ρ = 0.80) (Fig. 7a). This agrees with the notion that instructions with high degree are more

likely to become involved in new functions, and this linear form is precisely what is used in the Barabási

Alberts-model to achieve a scale-free distribution. The preference function for the functions has a more

complicated shape with a sharp increase for low k, a plateau for intermediate k and finally a drop-off for

higher values (Fig. 7b). Although there is a linear preference for low k, most functions actually emerge

with a degree already in the flat region of the preference function (the average initial degree was 〈k0〉 ≈ 27),

which implies that the acquisition of new genes is essentially independent of degree and is even inhibited

for larger k.

Discussion

The results from the experiments with Avida agrees with the results from the yeast study, where the gene-

function network in the digital organisms also exhibits two distinct degree distributions, the function degree

decays exponentially while the instruction degree follows a power-law distribution. Further, we could show

that the instructions nodes acquired new links according to a preferential attachment process, while the

functions in essence were subject to random degree independent dynamics. The preferential attachment of

the instructions, and therefore the scale-free degree distribution, can be explained by invoking a process

whereby an entire function becomes duplicated and extended, through a mutation, into a novel function

carrying out a different computation. We can think of the new function emerging as a results of duplicating

one of the function nodes in the bipartite network together with all its links (see fig. 8a). If this is the case
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then an instruction with a high degree will be more likely to be connected to the duplicated function and

consequently will be more likely to increase its connectivity. This corresponds precisely to the increasing

preference function measured in Avida (see Fig. 7a), and is in agreement with previous studies in Avida

which showed that existing functions often serve as building blocks for novel functions (Lenski et al., 2003;

Gerlee and Lundh, 2008). An explicit example of this process is displayed in Fig. 9a, which shows the the

FGA within one lineage of digital organism at three crucial times in the evolutionary history. From this

figure it can clearly be seen how the instructions previously involved in the AND-function also contribute

to the computation of the NAND-function and subsequently to the NOT-function. In the network setting

this corresponds to the NAND-node being an almost perfect copy (with respect to links) of the AND-node,

and the NOT-node in turn being a copy of the NAND-node, although with the loss and addition of several

links. A convenient way of describing this is to say that the NAND- and NOT-functions were formed by

duplication plus modification of existing function nodes.

The function connectivity on the other hand is driven by an essentially uniform preference function (see

Fig. 7b), which suggests that the link dynamics are more akin to the null-model, which in agreement with

the Avida function degree distribution exhibits an exponential decay (for degrees larger than the average).

Although this random mechanism to some extent can explain the observed dynamics and structure, there are

probably other elements which impact the evolution of the function connectivity. For example, functions

that depend on many instructions are more likely to be affected by deleterious mutations, and are therefore

selected against. There is also a minimal number of instructions needed to encode the boolean functions,

which sets a lower bound on the number of instructions each function depends on.

The scale-free gene degree distribution in the yeast gene-function network suggests that the process by

which genes become incorporated into new pathways is subject to a similar duplication process as in the

case of digital organisms. The emergence of new functions and pathways is still not well understood, but

evidence suggests that metabolic pathways have evolved through the reuse of existing pathways together

with the recruitment of new enzymes, denoted ”pathway duplication” (Schmidt et al., 2003; Jensen, 1976).

This refers to the development of a new metabolic function, while the original pathway is still retained.

This mechanism has also been suggested for the evolution of signalling pathways (Caffrey et al., 1999;
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Fryxell, 1996).

Naturally the emergence of novel pathways is triggered by genome level changes, such as gene dupli-

cation, but the effect of these events might manifest themselves at a higher level of organisation, giving

rise to a phenomenon similar to the function duplication observed in Avida. A pathway is by definition

a conceptual entity, created in order to categorise the vast number of chemical reactions that take place

within a living cell. Although this is the case we can still gain insight by comparing different pathways and

try to describe how they relate to one another, and the concept of pathway duplication is precisely such a

tool.

If pathway duplication is an active mechanism in yeast evolution then we would expect to observe

overlap between some pathways with respect to the genes that constitute them. This was tested by measur-

ing the number of pathways in the yeast dataset whose genes were completely contained within any other

pathway, and comparing it to a randomly rewired version of the network with the same degree distributions

(Maslov and Sneppen, 2002) (see Materials and Methods). In the original network this was true for 35

out of the 122 pathways, which was significantly higher than the average of 14 in the rewired networks

(Z = 131, P < 10−16 in a one-tailed Z-test). It should be noted that the overlap does not occur because

some of the pathways in the dataset represent a different level of organisation, such as superpathways (all

pathways with the prefix super- were removed in this study).

The relevance of the observed overlap of course requires a more detailed study of the pathways in ques-

tion, and we shall here give a three examples. The ”4-aminobutyrate degradation”-pathway is completely

contained within ”glutamate degradation I” (Fig. 9b), the reason being that 4-aminobutyrate is an inter-

mediate in glutamate degradation. This might seem as an artificially created overlap, but 4-aminobutyrate

can also accumulate though permease-mediated uptake (Ramos et al., 1985), which means that the two

pathways actually represent different functionalities and qualify as separate units. A possible explanation

for this overlapping structure is that the ”glutamate degradation I”-pathway evolved as a duplication and

extension of ”4-aminobutyrate degradation”, mediated by the appearance of the GAD1 gene. Another ex-

ample is given by the ”valine biosynthesis”- and ”isoleucine biosynthesis”-pathways (Fig. 9c), which only

differ with respect to one gene ILV1, but exhibit different functionality. This structure suggests that the
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ability to synthesise isoleucine evolved through duplication of the valine pathway with the addition of only

one enzyme. A final example is given by the pathways ” fructose degradation” and ”mannose degradation”

(Fig. 9d). The genes involved in fructose degradation are completely contained within the ones taking part

in mannose degradation, suggesting the presence of a duplication event.

However, it should be noted that our criterion of complete containment is quite strict, and two path-

ways would fail to show any connection if the duplicated copy acquires only one new enzyme. Another

possibility which we do not take into account is divergence on gene level, where two pathways have the

same evolutionary origin, but contain paralogous enzymes (Fryxell, 1996). Our method therefore most

likely misses many potential duplications, and the exact relation between different pathways requires a

more thorough investigation, of which the work presented here is only the starting point.

It has been established that in real cells gene duplication is the main mechanism by which new genes

are created (Ohno, 1970; Wapinski et al., 2007; Prince and Pickett, 2002). The lack of selection pressure

on the newly created copy means that it can mutate and lose some of its functionality and also gain new

functionality (see Fig. 8a). Both genome-wide experimental studies (Wagner, 2001) and theoretical work

on the yeast protein interaction network (Pastor-Satorras et al., 2003) have shown that the rate of gene

divergence in yeast is considerable. This is in agreement with our observation that the pathway degree

distribution is exponential, because if the rate of gene divergence is low (a duplicated gene maintains most

of its previous functionality) a large fraction of the functions the parent gene was involved in will have their

degree increased. By this mechanism pathways that depend on many genes would have a higher chance of

increasing their degree, or in other words pathways gain new links through a preferential growth process,

and this would lead to a scale-free pathway degree distribution. Instead our results suggest that duplicated

genes become involved in new functions in a more random fashion, independent of their degree.

This observation points to the fact that although we observe similar degree distributions for the func-

tions/pathways in the case of Avida and yeast the underlying dynamics are different. In Avida there is no

such thing as ”instruction duplication”, but the instructions receive links in a uniform manner and this is

what unites the two systems. More importantly, our analysis suggests that in both yeast and Avida the

pathways/functions are subject to duplication dynamics, by which the organism can construct new path-
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ways from existing building blocks. This presents an accessible way for the cell to acquire novel pathways

which in turn could make its metabolism more efficient. Precisely which pathways are selected for natu-

rally depends on the environment in which the organism lives, which in the case of Avida we can control by

changing the rewarded boolean functions or the parameters which define the digital world, but in the case

of yeast we know little about. Inferring the impact of selective forces on the observed features therefore

becomes very difficult, although for Avida we can make some specific observations. For example it is

known that the mutation rate affects the structure of the gene-function network, and that a higher mutation

rate results in a instruction degree distribution with a smaller slope γ (Gerlee and Lundh, 2008). It is also

know that highly connected instructions reduce the total number of instructions that are need for encoding

the functions, which increases copying fidelity and decreases replication time (Edlund and Adami, 2004;

Gerlee and Lundh, 2005) . This selective pressure also contributes to the decreased link attachment rate for

functions with high degree. Functions that depend on many instructions are more likely to be affected by

deleterious mutations, and are therefore less likely to be preserved in the population. This probably applies

to yeast evolution as well, where overly complex pathways which depend on many metabolites and involve

many enzymes would be negatively selected for.

Conclusion

In this paper we have presented a new method of analysing gene-function dependency, which allows for a

different perspective of the evolution of cellular functions. The main finding is that pathway duplication

is an important mechanism in the emergence of novel metabolic pathways, both in digital organisms from

the Avida-plaform and in yeast. This is supported by direct evidence from experiments in Avida, where the

entire evolutionary history of the system can be accessed and analysed, and from the current state of the

yeast metabolic gene-function network, which reveals significant overlap between different pathways.

The gene-pathway relationship is however just one example of how this graph theoretic approach can

be utilised. In essence it can be applied to any hierarchical system where the functionality at one level

depends on components at a lower level of organisation. One could for example consider a whole se-
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quence of connected bipartite graphs describing the dependency between each level. For example, protein

complexes, signaling pathways, and transcriptional modules can all be described within this framework.

This hierarchical network approach could therefore be helpful in understanding the organisation of cellular

functions and the evolution of modularity.

Materials and Methods

Yeast data

The null-model for the gene-function network assumes that each pair of gene and pathway in the network

are linked with a given probability p. If we assume that we have Ng genes and N f pathways in the network

the probability of finding a gene which is linked to k pathways is binomially distributed with

pg(k) =
(

N f

k

)
pk(1− p)N f−k, (1)

and the converse of finding a pathway which depends on k genes is given by

p f (k) =
(

Ng

k

)
pk(1− p)Ng−k. (2)

The link probability p can be estimated from the data as p = Ne/(NgN f ), where Ne is the total number of

edges in the real network. These distributions can, when N ≥ 100 and N p ≤ 10 (which is the case for the

yeast data), be approximated by Poisson distributions

p f ,g(k) =
e−λλk

k!
(3)

with parameter λ = pN f ,g. The Poisson distribution in turn decays approximately exponentially with

p f ,g(k)∼ e−βk (4)

when k� λ, which for the genes corresponds to k� pN f ≈ 1.3 and for the pathways k� pNg ≈ 4.8. In

conclusion we have that the suggested null-model of the bipartite gene-function network should exhibit an

exponential decay in both degree distributions.

From the Yeast Biochemical Pathways dataset the gene degree distribution (probability density func-

tion) was estimated by counting the number of genes with degree k (denoted by nk) and dividing it by the
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total number of genes, i.e. pg(k) = nk/Ng, where Ng is the total number of genes. An identical proce-

dure was applied to retrieve the function degree distribution p f (k). From these the cumulative distribution

functions (CDF) P(x > k) = 1−P(x ≤ k) = 1−∑x≤k p(x) were calculated. A linear regression, after a

semi-log/log-log–transformation, was then performed on the CDFs in order to estimate the parameter β /γ.

In case of a scale-free CDF with parameter γ the corresponding degree distribution is scale-free with pa-

rameter γ + 1, while for an exponential distribution the CDF and the degree distribution coincide. The

clustering coefficient for node i in the one mode network (Fig. 2) is defined as Ci = 2n/(ki(ki−1)), where

n is the number of links between the ki neighbours of node i, and the average clustering coefficient 〈C〉 is

obtained by averaging Ci over all nodes in the network. Note that for nodes with only one link the clustering

coefficient is undefined, and these are therefore disregarded in the calculation of the average.

The randomly rewired version of the network was constructed by iterated degree preserving rewiring of

the original network (Maslov and Sneppen, 2002). At each iteration two edges i→ j and k→ l were chosen

at random and rewired so that i connects to l and vice versa. If any of these two edges already existed the

rewiring was aborted and two new edges were chosen. The pathway overlap in the original network was

compared with 1000 of these random networks each being subject to 105 rewiring iterations.

Avida

All experiments were performed with Avida 2.6 using the default settings. The mutations that occur in

Avida are either copy mutations or insert/delete mutations. Copy mutations randomly change the copied

instruction into a randomly chosen instruction (i.e. point mutation) and occured at a rate of 0.005 per

instruction copied. The other type of mutations randomly insert or delete instructions and occured at a

rate of 0.05 per genome copied. The ancestral genotype used in all experiments was 100 instructions long

and only had the capability to self-replicate. Self-replication only requires 15 instructions and the rest

were copies of a single instruction (nop-C) that does not modify the CPU when executed. The functions

performed by the organisms are basic boolean functions, such as NOT, OR and XOR, performed on 32-bit

binary strings (Lenski et al., 2003) (See Table S2). The binary strings are supplied to the organisms from

an input buffer and after manipulation they are returned to an output buffer. If the output agrees with any
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of the rewarded functions the organism gains energy and is executed at a higher rate. The basic unit for

computation is the nand instruction, with which the organisms can perform bitwise not-and operations on

the strings from the input buffer. As the nand-gate is a universal logical gate it can be used to construct

any of the rewarded functions, and the amount of CPU-time gained for each function is 2n where n is

the minimum number of nand instructions needed to perform the function. Each experiment terminated

after 50 000 updates (approximately 7500 ancestral generations), after which the most abundant genotype

together with its entire lineage were saved. The FGAs of the organisms were then calculated using the

MAP TASKS command (with the alignment flag) in Avida’s analyse mode. The alignment flag was used

in order to make it possible to compare genomes of varying length. The FGAs of the dominant genotypes

were used to calculate the function and gene (i.e. instruction) degree distributions in exactly the same way

as for the Yeast Biochemical Pathways dataset. The time-dependent FGAs (one for each lineage) were

created by aligning all the FGAs from the organisms in the lineage in order of phylogenetic depth. These

were then summed along either the instruction or function dimension to produce the plots shown in Fig. 6.

This gives us two matrices for each lineage, F and G which show the time evolution of the function/gene

degree. The size of F is 9× n, where 9 corresponds to the number of rewarded functions and n is the

total number of ancestors in the lineage. The size of G is m× n, where m is the length of the longest

genome in the lineage and n again is the total number of organisms in the lineage. In order to calculate

the rates Pf (k→ k + 1) and Pg(k→ k + 1) we calculated the difference matrix in the time dimension, i.e.

∆Ft,i = Ft+1,i−Ft,i (correspondingly for G). We then measured the degree of the corresponding function

(gene) in the positions where ∆Ft,i = 1. For each k we calculated the total number of such changes in

degree and divided it by the total occurence of that degree in the function matrix F . This gives an estimate

of the rate at which functions/genes with degree k increases their degree to k +1. The change in clustering

coefficient was assessed by measuring the root mean square deviation from the average for t ∈ [50, tmax],

where tmax is the number of ancestors in the lineage, and 50 is chosen so as to avoid the initial increase in

the clustering coefficient. This measure was averaged over all lineages and the results was 〈Crms〉 = 0.01,

which suggests that the average clustering coefficient is stationary during evolution of digital organisms.
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Figure 1: The processing of the Yeast Biochemical Pathways dataset. (a) First the data was translated into

a functional genomic array, FGA. Each row represents a gene and each column a pathway (or function).

A gene is coloured black in a pathway column if the gene is involved in that pathway and white if not.

(b) The FGA can also be interpreted as the adjacency matrix of a bipartite graph which also visualises the

gene-function dependency (as the full graph consists of 463+122=585 nodes and 643 edges only a subset

is shown). From this graph we can extract cumulative degree distributions for (c) the pathways/functions

(d) the genes. This reveals that the two distributions scale in two different ways, the pathway distribution

is exponential while the gene distribution is scale-free.

Figure 2: One mode projection of the gene-function network. A gene-function network can be turned

into a functional gene network through a one mode projection, which connects two genes if they are next-

nearest neighbours in gene-function network. This process is not one-to-one as is evident from the two

examples given, and the functional gene network therefore contains less information as it disregards which

pathways two adjacent genes share. The gene-function network can be viewed as a decomposition of a

functional gene network because the latter can be constructed by multiplying the adjacency matrix of the

gene-function network with its transpose. This bipartite network separates the gene and function connec-

tivity into two separate distributions and therefore gives a more detailed description of gene functional

association.

Figure 3: The degree distributions from the gene-function graph generated from the KEGG dataset. In

similarity with the SGD dataset the gene degree distribution (a) is scale-free and the pathway degree distri-

bution (b) is exponential.
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Figure 4: The virtual CPU in which the digital organisms are executed. The CPU consists of a memory

which holds the genome of the organism and an instruction pointer (IP), which indicates the next instruction

to be executed. The execution of an instruction alters the state of two stacks and three registers (AX, BX and

CX), which can hold arbitrary 32-bit integers. A summary of all instructions and their action on the CPU is

shown in Table S1. Connected to the CPU is one input and output buffer, which the organism uses to receive

and return information and is used in the computation of the rewarded functions (summarised in Table S2).

In addition to the instruction pointer the CPU also holds a Read-Head, a Write-Head, and a Flow-Head,

which specify positions in the memory. When a copy command is executed it copies an instruction from

the Read- to the Write-Head, and the Flow-Head specifies the new location of the instruction pointer when

a mov-head instruction is executed. For further information on the Avida system please consult (Adami,

1998) and the online documentation (http://devolab.cse.msu.edu/software/avida/doc/).

Figure 5: The gene (instruction) and function cumulative degree distributions calculated from the digital

organisms. (a) the gene degree distribution exhibits a scale-free decay with a cut-off for large k, and (b) the

function degree distribution which decays exponentially for k larger than the mean degree 〈k〉 ≈ 26. Note

that the gene distribution in (a) is shifted in order to allow for the inclusion of instructions with zero degree.

Figure 6: The evolution of the gene-function relationship for one lineage of digital organisms. In (a) the

FGA is summed along the function dimension showing how many functions each instruction (or gene)

is involved in as a function of the phylogenetic depth in the lineage. In (b) the FGA has been summed

along the instruction dimension instead, showing how many instructions each function depends on. The

average clustering coefficient (c) increases sharply when the first functions are acquired, but then remains

essentially constant with only small fluctuations around the average.

Figure 7: The preference function for the Avida instruction and function degree dynamics. The rate at

which the instructions increase their degree might be approximated by a linear function of the degree (a),

while for the functions the preference function seems to be constant for intermediate k, while exhibiting a

cut-off for small and large k (b).
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Figure 8: The growth dynamics of the gene-function network. (a) When a gene is duplicated (shown in

white) it increases the degree of the pathways it is connected to, but subsequent divergence (loss and gain of

functionality) rewires the gene-function network (the lost functionality is shown as dashed and the gained

as dash-dot). Through gene duplication, pathways that involve many genes are more likely to increase

their degree, but the exponential pathway degree distribution suggests that the rate of gene divergence

overshadows this preferential attachment effect. (b) When a pathway is duplicated (shown in white) it

increases the degree of the genes involved in it. This implies that genes that are involved in many pathways

are more likely to increase their degree, and this is supported by the scale-free gene degree distribution

found in both yeast and digital organisms.

Figure 9: Examples of pathway duplication in Avida (a) and yeast (b-d). The top panel (a) shows the

evolution of the FGA within one lineage of digital organisms. These FGAs show that the instructions first

involved in the AND-function also contribute to the NAND-function and the NOT-function. With respect

to the instructions which constitute them it seems like the two subsequent functions are partial copies of

the AND-function, or in other words that the AND-function has been duplicated to form the two other

functions. Panel (b-d) show three pairs of pathways which suggest a similar type of function duplication

in yeast (downloaded from http://www.yeastgenome.org/, 18/10/08, (Christie et al., 2004)). In all these

examples the larger pathway was probably formed through the addition of one or two genes.
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Supporting Figure 1: The cluster coefficient as a function of the node degree plotted in log-log diagrams

for (a) SGD, (b) KEGG and (c) Avida. The black line has slope -1, and shows that for high k the clustering

coefficient scales approximately as C(k) ∝ k−1 in all three networks. This relation reveals that there exists

a hierarchy of nodes with varying degrees of modularity, where nodes with low degree tend to be highly

clustered while nodes with a high degree have a low clustering (Ravasz et al., 2002). The clustering

coefficients for Avida were averaged over 120 different runs.
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Supporting Figure 2: The evolution of the average clustering coefficient for six different Avida runs. From

these plots it is evident that that 〈C〉 remains essentially constant during evolution except for the inital

increase which is coupled with the emergence of the first function.
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Supporting Tables

Supporting Table 1: Summary of all instructions and their action on the CPU.
Instruction Action
nop-A, nop-B,
and nop-C No-operation instructions; these modify other instructions.
if-n-equ Execute next instruction only-if ?BX? does not equal its complement
if-less Execute next instruction only if ?BX? is less than its complement
pop Remove a number from the current stack and place it in ?BX?
push Copy the value of ?BX? onto the top of the current stack
swap-stk Toggle the active stack
swap Swap the contents of ?BX? with its complement.
shift-r Shift all the bits in ?BX? one to the right
shift-l Shift all the bits in ?BX? one to the left
inc Increment ?BX?
dec Decrement ?BX?
add Calculate the sum of BX and CX; put the result in ?BX?
sub Calculate the BX minus CX; put the result in ?BX?
nand Perform a bitwise NAND on BX and CX; put the result in ?BX?
IO Output the value ?BX? and replace it with a new input
h-alloc Allocate memory for an offspring
h-divide Divide off an offspring located between the Read-Head and Write-Head.
h-copy Copy an instruction from the Read-Head to the Write-Head and advance both.
h-search Find a complement template and place the Flow-Head after it.
mov-head Move the ?IP? to the same position as the Flow-Head
jmp-head Move the ?IP? by a fixed amount found in CX
get-head Write the position of the ?IP? into CX
if-label Execute the next instruction only if the given template complement was just copied
set-flow Move the Flow-Head to the memory position specified by ?CX?
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Supporting Table 2: The functions performed by the organisms are basic boolean functions, out of which
one (NOT) is a single input function and the rest are two-input functions. The NOT-function simply inverts
every bit in the 32-bit string received from the input buffer. The output of the two-input functions is
summarised the table, which also displays the number nand instructions needed to compute them.

Input Output
X Y NAND AND OR N OR AND N NOR XOR EQU
0 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 0 0 1 0
1 0 1 0 1 1 1 0 1 0
1 1 0 1 1 1 0 0 0 1

no. of nand’s 1 2 2 3 3 4 4 5
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Supporting Video Legend

Video 1: Instead of projecting the 3-dimensional (time-dependent) FGA into two matrices that describe the

function and instruction dynamics separately, we have also created a movie of the evolution of the FGA.

Each frame of the movie corresponds to an organism in the lineage and the table below details the changes

that can be observed. There are two events that dominate the dynamics: (i) function transformation and (ii)

duplication. When a transformation occurs the appearance of the new function is accompanied by the loss

of the parent function, while during a duplication event the parental function is kept.

Phylogenetic Event
depth
14 NOT appears
17 NOT is transformed into AND
22 AND is duplicated to NAND
25 AND + NAND are changed into NOT+OR
27 NOT is transformed into AND
29 AND is duplicated to NOT
37 AND is duplicated to NAND
40 NOT is transformed into OR N
41 OR N is transformed into AND N
45 NAND is duplicated to NOT
45-86 Recoding of existing function
87 AND N is transformed into NOR
87-177 Recoding of existing function
178 OR is transformed into XOR
181 NOR is duplicated to OR
180-287 Recoding of existing function
288 XOR is duplicated to OR N
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